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Suppose the potential V (X) has the following form

V (X) =
�

i,j

tr( [Xi, Xj]
2 )

then V (X) is minimal when the matrices Xi do commute. At
the minimum Xi can be simultaneously diagonalized.

This is the ‘emergence’ of space.
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Matrix Theory 
Early example of gravity arising from gauge theory:

* Large N matrix quantum mechanics
* Eigenvalues are positions of particles     
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Matrix Theory 
Early example of gravity arising from gauge theory:

* Large N matrix quantum mechanics
* Eigenvalues are positions of particles     
* Off-diagonal modes are open strings
*Quantum fluctuations induce gravity:     
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Holographic Extra Dimension via
Open/Closed String Correspondence
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* 1/N expansion =  string perturbation theory

* planar diagram = triangulation of world sheet
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Maldacena’s argument

                   
                                    

A first subtlety is that the 5-d physics in the matter brane region is likely to be singular.
Thus far, however, we did not need to worry about this issue, because we chose to describe
the matter brane region by means of the dual low energy field theory. No special assumptions
about the properties of the singularity were needed, except that at some distance away from
it we can use the geometric supergravity language to derive the constraint (12). It is not
important for our argument, for example, whether there are discrete or continuously many
solutions to this constraint.

Regardless of this issue, it is clear that the matter brane effective action should be
allowed to be as arbitrary as possible. Nonetheless one would hope to naturally stabilize
its location by means of its interaction with the Planck brane. We will first describe two
possible mechanisms, which however both will fall short in that they either remain unstable
or need unnatural fine-tuning. We will then describe a third scenario that will resolve these
problems.

Attempt 1: Goldberger-Wise mechanism [17]

Suppose that, in spite of the fact that it describes a singular space-time region, we
would assume that the matter brane dynamics is well approximated by that of some classical
brane with some arbitrary tension Λ(φ). We can then look for a classically stable location for
matter brane as follows [19]. A static bulk solution, when matched onto the supersymmetric
boundary conditions set by the Planck brane, is described by scalar fields φ(r) and a metric

ds2 = a2(r) ηµνdxµdxν + dr2, (22)

satisfying the supersymmetric flow equations

a′

a
= −

1

6
W (φ) φ′ = ∂φW. (23)

From this one finds that the matching relations at the matter brane, that are required for
there to be a flat solution, are that (cf. eqn (20))

∂φΛ(φc) = ∂φW (φc) Λ(φc) = W (φc) (24)

for some critical value of φc for the scalar fields. The first equation generically gives at most
a discrete set of solutions for φc. The second relation, however, is then valid only if the
value of Λ at such a critical point φc is exactly equal to that of the superpotential W . This
amounts to an unnatural fine-tuning of the matter brane action. However, even if we would
choose Λ(φ) such that this condition is satisfied, the equations of motion (24) still fail to
stabilize the relative location of the Planck and matter brane, as they do not pick out one
particular preferred relative ratio for the scale factors a at the two branes.

9

Gravitational back reaction 
creates a 

warped geometry

Extra dimension = RG scale
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Large N spin chain = World sheet theory

QCD � String Theory Gluons � Open Strings on D-branes

.

Theory of Strong Interactions = Quantum Chromodynamics
7

QCD String
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QCD String
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N = 4 SYM ↔ Decoupling Limit of String Theory

6

1. The ‘emergence’ of strings.

How does confinement work? (Heuristically)

String  =

Gluon  = =  Matrix

=  (Matrix)
n

8

Large N QCD
defines a particular string 
theory, in a highly curved
target space. In QCD, this 
string is strongly coupled. 
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Fig 1. The 5-d geometry is bounded by two brane-like structures, the Planck and matter

brane. The physics near the Planck brane is assumed to be supersymmetric. The line of

separation between the matter brane and the 5-d bulk is indicated by the dashed line.

be protected by supersymmetry. This possible reappearance of supersymmetry at large
distance scales can be seen as related to the fact that – unlike in the conventional non-
compact set-up – the UV/IR mapping of the AdS/CFT correspondence now acts on one
single space-time that combines both the 4-d boundary field theory and the 5-d bulk gravity.
Via this UV/IR duality, the infra-red bulk region of the AdS-space near the Planck brane
becomes the natural home base for both the shortest and longest distance physics.

In the following, we will try to test the consistency of these two assumptions. To this
end, we will address the following obvious and most serious counter-argument. Intuitively,
one would expect that the low energy matter sector on the matter brane will produce some
quite arbitrary effective tension, that (without some unnatural or non-local fine-tuning) is
expected to induce a non-zero cosmological constant for the total 4-d effective field theory.
If indeed present, its backreaction would curve the Planck brane and consequently break its
supersymmetry.

A different version of the same objection is that the AdS/CFT dictionary tells us that
the normal variations of the local supergravity fields near the Planck brane in fact know
about low energy quantities of the dual field theory, such as vacuum expectation values,
etc. In particular, the normal variation of the bulk metric (or more precisely, the extrinsic
curvature at the Planck brane [11]) knows about the full vacuum energy produced by the
low energy field theory. It would seem quite unnatural to expect that the Planck brane
dynamics could be chosen such that, without any pre-knowledge of the IR dynamics, it
exactly cancels this matter contribution to the vacuum energy.

In the following sections we will describe a mechanism that will neutralize this counter-
argument. In the final section we address some other aspects of our proposal, and discuss
its relation with other recently proposed scenarios [12][13].

2
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* cut away the AdS space

* path integral over exterior
defines a wave function 

= Wilsonian effective action

* radial Schrodinger eqn 
= Wilsonian RG evolution  

Gravity with a running cut off Λ

Consider a 4-d gravitational theory, given by the low energy effective field theory of some

consistent string compactification. We schematically write its action as

Sgrav(φ) =
1
2G

IJφIφJ + V (φ) . (5)

Here φI denotes some complete collection of closed string fields, including the space-time

metric gµν , and I is some multi-index that includes the space-time dependence of the fields.

Since we would not know how to solve the complete UV theory, we will choose to specify

this gravitational theory by following the Wilson prescription.

Sgrav(φ ;Λ) (6)

δΛe
− 1
h̄Sgrav(φ,Λ) =

�
Dϕ e

− 1
h̄

�
ĠIJ

2δΛ ϕIϕJ − Sgrav(φ+ ϕ ;Λ)
�

(7)

ĠIJG
JK

= 0 (8)

h̄∂Λe
− 1
h̄Sgrav(φ,Λ) = Ĥgrav e

− 1
h̄Sgrav(φ,Λ) (9)

Ĥgrav = h̄
2
ĠIJ

∂2

∂φI∂φJ
(10)
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be protected by supersymmetry. This possible reappearance of supersymmetry at large
distance scales can be seen as related to the fact that – unlike in the conventional non-
compact set-up – the UV/IR mapping of the AdS/CFT correspondence now acts on one
single space-time that combines both the 4-d boundary field theory and the 5-d bulk gravity.
Via this UV/IR duality, the infra-red bulk region of the AdS-space near the Planck brane
becomes the natural home base for both the shortest and longest distance physics.

In the following, we will try to test the consistency of these two assumptions. To this
end, we will address the following obvious and most serious counter-argument. Intuitively,
one would expect that the low energy matter sector on the matter brane will produce some
quite arbitrary effective tension, that (without some unnatural or non-local fine-tuning) is
expected to induce a non-zero cosmological constant for the total 4-d effective field theory.
If indeed present, its backreaction would curve the Planck brane and consequently break its
supersymmetry.

A different version of the same objection is that the AdS/CFT dictionary tells us that
the normal variations of the local supergravity fields near the Planck brane in fact know
about low energy quantities of the dual field theory, such as vacuum expectation values,
etc. In particular, the normal variation of the bulk metric (or more precisely, the extrinsic
curvature at the Planck brane [11]) knows about the full vacuum energy produced by the
low energy field theory. It would seem quite unnatural to expect that the Planck brane
dynamics could be chosen such that, without any pre-knowledge of the IR dynamics, it
exactly cancels this matter contribution to the vacuum energy.

In the following sections we will describe a mechanism that will neutralize this counter-
argument. In the final section we address some other aspects of our proposal, and discuss
its relation with other recently proposed scenarios [12][13].
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Holographic Renormalization Group

Reconstruct extra dimension from exact RG
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Fig 3: In the zero slope limit α′ → 0, the open string loop diagram reduces to an ordinary planar
Feynman graph of the low energy gauge theory. The restriction (11) on the minimal geodesic length
of the non-contractible contour C then translates into a lower bound on the sum of the Schwinger
parameters ti of the propagators contained in C.

where the sum is over all propagators that make up the contour C. This restriction indeed renders

the integral UV finite.

We can now use a similar reasoning as above to try and extract the ε dependence, by explicitly

differentiating the total integral over all Schwinger parameters with respect to the UV cut-off (22).

The analog of the formula (15) should now be extracted from analysing the UV limit of the one-

loop gauge theory amplitude in a background large N gauge-field A, with couplings φi turned on;

equation (15) then corresponds to the fact that, to leading order in 1/N , this amplitude factorizes

into a sum over gauge invariant single trace-operators Oi.

Useful insight into how one should interpret the sigma model data contained in Φ is obtained

by considering the equation of motion of the total effective action (16). It is possible to write it

in the form of a recursion relation, by expanding the closed string background Φ in powers of the

string coupling λ

Φ =
∑

n≥1

λn Φn (23)

where Φn is assumed to be independent of λ. The equation of motion of Φn

δS

δΦn
= 0 (24)

now takes the following form

Q|Φn〉 = [ 1 ]n +
∑

1≤m≤n−1

∑

∑

j
j kj=m

1

k1! · · · km!
[ (Φ1)

k1 . . . (Φm)km ]n−m. (25)

Here [. . .]n denotes the state associated to a surface as indicated in fig 4: the sphere with n holes

at the end of a tube with length 1/ε, and with operator insertions specified by the (. . .). The

above formula can be used to recursively construct Φn from the previous Φm’s with m < n.
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Fig 1a and 1b: A planar n loop open string diagram is given by the integral over all shapes of
a spherical Riemann surface Σ with n+1 holes. When a non-contractible contour C surrounding
some of the holes acquires a very small length !(C) = ε, the surface degenerates into two separate
spherical surfaces Σ1 and Σ2 connected by a long tube of length 1/ε.

diagram arise when one or more of these geodesic lengths !(C) tends to zero. We will therefore

introduce a UV regulator ε by requiring that the moduli integral is restricted to those conformal

structures for which

!(C) ≥ ε (11)

for all non-contractible contours C. Hence the boundary of the regulated moduli space are degen-

erate surfaces for which the above bound (11) is saturated for one or more contours C.

Since in the end we need to compare this type of degeneration of the open string loop di-

agram with the sigma-model divergences, it seems most practical to regulate the sigma-model

expectation values in an analogous fashion. To this end, we explicitly expand the exponential in

eqn (7)

Γn(φ; ε) =
∑

k≥0

1

k!
〈 Φ · · ·Φ

︸ ︷︷ ︸

k×

〉n =
∑

k≥0

1

k!
〈 (Φ)k〉n (12)

with

Φ =
∑

i

∫

φi Oi . (13)

The k-th order term on the right-hand side is a correlator, defined in the φ = 0 sigma-model,

of k operators Φ on an n−1 loop open string diagram. The resulting amplitude is therefore

an integral over the moduli space of a sphere with n holes and k punctures. (See fig 2a.) We

can now apply the same construction as above, and use the unique minimal area metric on this

punctured surface to assign a given minimal geodesic length to all closed contours surrounding

a non-zero number of holes and/or punctures, and require that all such lengths must be larger

than the cut-off ε. In this way we have indeed introduced one uniform cut-off procedure for both

types of divergences.4

4Given the limited available tools for dealing with sigma-models with RR backgrounds, the procedure outlined

4

UV divergences in a QFT can be thought of as due to 
on-shell closed strings that propagate in a dual channel
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UV divergences in a QFT can be thought of as due to 
on-shell closed strings that propagate in a dual channel

Counter terms in a (large N) QFT satisfy the eqns 
of motion of a (classical) closed string field theory.
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− 1
h̄Sint(A,Λ) (13)
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Ȟgrav = vI
∂

∂φI
+ gIJ

∂2

∂φI∂φJ
(22)

6

S0(A ;φ) =
�

(i1...in)

φ(i1...in) tr
�
A

i1 . . . A
in
�

(11)

δΛe
− 1
h̄Sint(A,Λ) =

�
Da e

− 1
h̄

� αij

2δΛ tr(a
iaj) + Sint(A+ a ;Λ)

�
(12)

h̄∂Λe
− 1
h̄Sint(A,Λ) = Ĥgauge e
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Perform a generalized Hubbard-Stratonovic transform:

Single trace couplings = closed string fields
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Open/closed string duality follows from the identity:
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Open/closed string duality follows from the identity:

exact RG evolution = Schrodinger equation

RG evolution at large N = Hamilton-Jacobi equation

Gravity with a running cut off Λ

Consider a 4-d gravitational theory, given by the low energy effective field theory of some

consistent string compactification. We schematically write its action as

Sgrav(φ) =
1
2G

IJφIφJ + V (φ) . (5)

Here φI denotes some complete collection of closed string fields, including the space-time

metric gµν , and I is some multi-index that includes the space-time dependence of the fields.

Since we would not know how to solve the complete UV theory, we will choose to specify

this gravitational theory by following the Wilson prescription.

Sgrav(φ ;Λ) (6)
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�
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* The 5-d graviton is one of the closed string modes

* The stress tensor is a single trace operator of QFT 

Some general comments:
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* The 5-d graviton is one of the closed string modes

* The stress tensor is a single trace operator of QFT 

Some general comments:

* The classical action S(phi) is induced via quantum fluctuations

* Gravity is a reaction force induced via quantum fluctuations 

* RG involves dividing the modes into momentum shells

* There is an associated entanglement entropy:  UV  <=>  IR

* Entanglement entropy is proportional to area: `holography’

* 5-d Gravity can be understood as a consequence of the 
thermodynamic laws  that relate entropy and energy.  

T. Jacobson
E. Verlinde
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A) In a Rindler wedge, the vacuum has temperature and entropy:

Jacobson’s argument:    QFT + Thermo = Einstein Eqn

T =
h̄

2π
, S = αA

2

Entropy scales with area because entanglement is dominated 
by short wavelength modes that cross the Rindler horizon.
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2π
, S = αA
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B) When heat flows in at temperature T, the entropy increases by:T =
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dS =
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T
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Clausius relation
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A) In a Rindler wedge, the vacuum has temperature and entropy:

Jacobson’s argument:    QFT + Thermo = Einstein Eqn

T =
h̄

2π
, S = αA

2

Entropy scales with area because entanglement is dominated 
by short wavelength modes that cross the Rindler horizon.

B) When heat flows in at temperature T, the entropy increases by:T =
h̄

2π
, S = αA

dS =
dQ

T

2

Clausius relation

 A + B + general geometric facts imply Einstein eqns, with

T =
h̄

2π
, S = αA

dS =
dQ

T

α =
1

4h̄GN

2
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Can we use these ideas to define a quantum gravity 
in space-time with positive cosmological constant?
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* AdS with cut-off = warped compactification
                         = QFT(d)+ Gravity(d)

*Gravity in AdS(d+1) is dual to QFT(d)

Hint from AdS/CFT:
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* AdS with cut-off = warped compactification
                         = QFT(d)+ Gravity(d)

*Gravity in AdS(d+1) is dual to QFT(d)

Hint from AdS/CFT:

But how do we find it?

Look for a consistent, covariant cut-off 
of gauge theory with a holographic dual.

Idea
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* Identify the most basic constituent d.o.f.                      

Hint from Matrix Theory:

* Start from a UV complete string theory

 * Saturate the number N of constituent d.o.f. 

* Take a large N decoupling limit 

BFSS
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Yang monopole:
homogeneous instanton
with maximal charge k

c.f. Zhang & Hu (2002)
Taylor et al (1998)

New idea:

U(N N )  -->  U(N )cc

 Consider                gauge 
theory on a four sphere
Set g   =0 and turn on a 
maximal homogeneous
U(N) instanton flux. So: 

U(N N )  c

ym
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Yang monopole:
homogeneous instanton
with maximal charge k

c.f. Zhang & Hu (2002)
Taylor et al (1998)

New idea:

U(N N )  -->  U(N )cc

 Consider                gauge 
theory on a four sphere
Set g   =0 and turn on a 
maximal homogeneous
U(N) instanton flux. So: 

U(N N )  c

ym

LLL dynamics defines a 
matrix model (ADHM)
Take a large N  and flat 
space limit, so that the
Planck cells stay finite.
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A light-like momentum pAA� and coordinate xAA�
can be re-arranged as via

pAA� = �πAπA� ωA
= ixAA�

πA� , ω̃A�
= −iπ̃Ax

AA�
.

One thus obtains a set of homogeneous coordinates

Zα
= (ωA, πA�), �Zβ = (�πA, �ωA�

)

[Zα, �Zβ] = �δαβ →
[ωA, �πB] = �δAB
[πA� , �ωB�

] = �δB�
A�

(1)

provides a representation of sl(4, ), the algebra of the complexified conformal group with

generators:

PAA� = �πAπA� , KAA� = �ωA�ωA ,

JAB = �π(AωB) , �JA�B� = �ω(A�πB�) , (2)

D =
1
2

�
�πAωA − �ωB�πB��

.

The SUSY extension adds fermionic oscillators
�
ψi, �ψj

�
= �δij.

The real space time signatures (++++), (++−−) and (−+++) correspond to the

realizations of sl(4, ) respectively by

su(4) : ω†
A = �πA, π

†
B� = �ωB� and � ∈ (3)

su(2, 2) : ω†
A = �ωA� , π†

A� = �πA and � ∈ (4)

sl(4, ) :

�
ω†
A = ωA, π

†
A� = πA�

�ω†
A� = �ωA� , �π†

A� = �πA�

�
and � ∈ i (5)

4

Given a light-like momentum p and space-time coordinate x

Geometric tool: 

Penrose ’67

Twistor Space

Penrose (1967)
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PT PT*
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generators with Lie algebra elements of SU(2). More general choices of flux can be accom-
modated via the principal embedding of SU(2) → SU(n), defined by identifying the spin

N/2 = (n− 1)/2 representation of SU(2) with the fundamental representation of SU(n):

1 → N1n×n, i → −2iI1, j → −2iI2, k → −2iI3, (3.3)

where Ik denote the spinN/2 representation of the SU(2) algebra. Here and in the following,
the integers N and n are related via N = n + 1 . The abelian contribution to the Yang

monopole defines a U(1) gauge connection

AU(1) =
N

2
(dZ†

αZ
α − Z†

αdZ
α), (3.4)

with curvature equal to N times the standard Kähler form on CP
3. The non-abelian

contribution defines an SU(n) gauge connection over HP
1 # S4, which via the Ward cor-

respondence lifts to an so(5) symmetric rank n holomorphic vector bundle over CP3.

In the following, the Yang monopole will refer to a gauge connection on twistor space,

given by the sum of the abelian flux (3.4) and the twistor lift of the SU(n) connection.
The instanton number of the resulting SU(n) gauge field is maximized by choosing the

irreducible representation, giving an so(5) homogeneous instanton with instanton number:

kinst =
n(n2 − 1)

6
. (3.5)

A somewhat more explicit description of the Yang monopole, which also brings out
its natural relation to the twistor geometry of the four sphere, is as follows [27]. We can

parametrize the seven sphere S7 by means of a four-component complex vector Zα (which
we can view as a spinor of so(5)), subject to the constraint

Z†
αZ

α = !N, (3.6)

where for later convenience, we chose the radius of the S7 equal to
√
"N . For now, however,

Z and Z† are just classical coordinates on S7. The U(1) action in the first Hopf fibration

S7 → CP
3 in (3.1) represents the phase rotation

(Z,Z†) → (eiφZ, e−iφZ†). (3.7)

Similarly, we can parametrize the four sphere S4 with the help of a five-component real
vector yA (which we can view as a vector of so(5)), satisfying

yAyA = !2. (3.8)

15

Wednesday, May 30, 2012



What does the low energy theory look like?

The SO(5) generators J , �J and
1
2(P +K) are hermitian:

P
†
= K, J

†
= J , �J†

= �J , D†
= −D, (6)

The Euclidean theory is therefore most naturally viewed as a radially quantized theory

on S4
.

(Q1, Q2) = (Z1 + jZ2, Z3 + jZ4) ∈ 1
= S

4
(7)

with
1
the quaternionic projective plane, and j a quaternion.

The commutator algebra identifies the twistor coordinates with creation and annihi-

lation operators, and functions on with linear operators on the associated Fock space.

Introduce a vacuum state such that Zα |vac�=ψi |vac�=0. The Fock space is:

F = span

��

β,i

�Znβ

β
�ψni
i |vac�

�
. (8)

F admits a grading according to the homogeneity operator:

D = �ZβZ
β
+ �ψiψ

i
. (9)

The level N subspace

D |Ψ� = �N |Ψ� (10)

describes the Hilbert space H (N) of fuzzy points on a non-commutative
3|4

with

Kähler parameter N . The bosonic subspace has dimension

k = (N + 1)(N + 2)(N + 3)/6. (11)

5

The SO(5) generators J , �J and
1
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P
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Indeed, making this substitution inside of the S4 part Aµ in (3.11) gives a maximal ho-
mogenous SU(n) instanton on S4. Again we see that the two components of the monopole,

the abelian flux (3.4) and the non-abelian homogeneous instanton background on S4, are
directly linked via the substitution (3.12) of the S2 coordinate with an SU(2) generator

embedded in SU(n). The complete rank n Yang monopole AY is the sum of the abelian
magnetic field (3.11) with the twistor lift of the homogeneous SU(n) instanton.

3.2 Lowest Landau Level

Let us look a little more closely at the effective geometry experienced charged particles
in the abelian flux background. At low energy, the particles are forced into their lowest

Landau level (LLL). This system was analyzed in detail in [9, 27]. The LLL states are
most succinctly characterized as the Hilbert state obtained by canonical quantization of

the abelian Berry holonomy Lagrangian (3.10).

We can do this in two different ways. We can first quantize the Zα coordinates, and
then impose the constraint (3.6) or we can first solve the constraint, as done via the S4×S2

parametrization (3.9). Let us first follow the second route. From the second form of the

Berry action in (3.10), we can read off the commutation relations among the ni and yµ, by
following the usual rules of canonical quantization. One finds coordinates which satisfy the

following commutator algebra [9, 27]

[ni, nj] =
2

N
εijknk , [yµ, yν ] =

"2

2N
ηiµνni, [ni, yµ] =

2

N
ηiµνy

ν. (3.13)

Rescaling the ni coordinates that paramterize the two sphere, we see that they turn into

generators of an su(2) algebra that rotates the S2. Since the rescaled S2 has radius N , we
learn that the su(2) acts via a spin N/2 representation. The S2 has turned into a non-

commutative sphere with n = N +1 fuzzy points. Moreover, we see that the su(2) algebra
does not commute with the position coordinates yµ, but instead act like the generators of
chiral space-time rotations. The space-time coordinates yµ coordinates also do not commute

among each other: their commutator is a generator of a chiral su(2) rotation. We will refer
to the non-abelian commutator algebra (3.13) later on, when we begin our study of the low

energy physics of the hCS theory with flux.

The above discussion also clarifies the mapping (3.12) between the abelian and non-
abelian flux: it identifies the spin N/2 representation of chiral su(2) rotations with su(2)

gauge generators embedded inside an SU(n) gauge group. The replacement (3.12) results
in a homogeneous, so(5) invariant instanton configuration, by virtue of the fact that we
can combine the chiral su(2) space-time rotations with global su(2) rotations, that acts on

the Lie algebra labels of the SU(n) gauge field. Indeed one can show that the total space

17

generators with Lie algebra elements of SU(2). More general choices of flux can be accom-
modated via the principal embedding of SU(2) → SU(n), defined by identifying the spin

N/2 = (n− 1)/2 representation of SU(2) with the fundamental representation of SU(n):

1 → N1n×n, i → −2iI1, j → −2iI2, k → −2iI3, (3.3)

where Ik denote the spinN/2 representation of the SU(2) algebra. Here and in the following,
the integers N and n are related via N = n + 1 . The abelian contribution to the Yang

monopole defines a U(1) gauge connection

AU(1) =
N

2
(dZ†

αZ
α − Z†

αdZ
α), (3.4)

with curvature equal to N times the standard Kähler form on CP
3. The non-abelian

contribution defines an SU(n) gauge connection over HP
1 # S4, which via the Ward cor-

respondence lifts to an so(5) symmetric rank n holomorphic vector bundle over CP3.

In the following, the Yang monopole will refer to a gauge connection on twistor space,

given by the sum of the abelian flux (3.4) and the twistor lift of the SU(n) connection.
The instanton number of the resulting SU(n) gauge field is maximized by choosing the

irreducible representation, giving an so(5) homogeneous instanton with instanton number:

kinst =
n(n2 − 1)

6
. (3.5)

A somewhat more explicit description of the Yang monopole, which also brings out
its natural relation to the twistor geometry of the four sphere, is as follows [27]. We can

parametrize the seven sphere S7 by means of a four-component complex vector Zα (which
we can view as a spinor of so(5)), subject to the constraint

Z†
αZ

α = !N, (3.6)

where for later convenience, we chose the radius of the S7 equal to
√
"N . For now, however,

Z and Z† are just classical coordinates on S7. The U(1) action in the first Hopf fibration

S7 → CP
3 in (3.1) represents the phase rotation

(Z,Z†) → (eiφZ, e−iφZ†). (3.7)

Similarly, we can parametrize the four sphere S4 with the help of a five-component real
vector yA (which we can view as a vector of so(5)), satisfying

yAyA = !2. (3.8)

15

Penrose ’67

We would like to find a parametrization of Zα in terms of the geometric data of the
second Hopf fibration S7 → S4 in (3.1). In fact, we have already found this parametrization:

it is given by the twistor correspondence for S4 summarized in section 2.1. Concretely, we
can package the S4 coordinates yA into a 4× 4 matrix x̃ β

α as in (2.6), and impose that x̃αβ

and Z satisfy the twistor line equation (2.7). Indeed, in so(5) spinor notation (and setting
!=1), the parametrization (2.12) amounts to setting x̃ = 1

2(1 − ΓAyA), with ΓA the so(5)

gamma matrices. The twistor line equation (2.7) then takes the standard form of the Hopf
equation: Z + yAΓAZ = 0. This equation is explicitly solved, up to an overall phase, via

Zα =
1

√
!(!+ y5)






−iyµσµ

(
u1

u2

)

(!+ y5)

(
u1

u2

)






;

(
u1

u2

)
=

√
!N

1 + n3

(
1 + n3

n1 + in2

)

(3.9)

where the ni are normalized unit vectors on R3, defining a unit two-sphere nini = 1. They
parametrize the twistor line above the given point yA on the four sphere. Combined, the

yA and ni represent a complete coordinate system on CP
3.

Following [27], we may now characterize the abelian part of the Yang monopole (3.4)
as the Berry connection of the spinor Zα defined over CP3. Since the associated holonomy

is just a phase, the Berry phase Lagrangian for the spinor coordinates is

1

!
L =

i

!
Z†

αŻ
α = −N

(
ε3ijniṅj

1 + n3
+

ηiµνniyµẏν

!(!+ y5)

)
(3.10)

where ηiµν = εiµν4+δiµδν4−δiνδµ4 denotes the ’t Hooft symbol. Using this, we can reconstruct
a gauge field flux on both the S4 direction, and along the S2 fiber:

Aµ = N
ηiµνniyν

!(!+ y5)
, A5 = 0, Ai = N

ε3ijni

1 + n3
(3.11)

which defines the abelian Yang monopole connection on CP
3.

Both terms in (3.11) have a familiar form. The S2 part Ai represents the constant

magnetic flux through a unit two sphere, produced by a Dirac monopole of charge N at
its center. It arises because the two Hopf fibrations in eqn (3.1) are related to each other

via the basic Hopf fibration S3 → S2 that embeds U(1) inside SU(2). Similarly, the S4

part Aµ looks like the abelianized twistor lift of the basic SU(2) instanton – or rather its

embedding via the spin N/2 representation inside SU(n) – via the identification

ni ↔ −2i

N
Ii. (3.12)
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Matrix Action = Fuzzy Chern-Simons + Matter The hCS sector on fuzzy captures the collective dynamics of the D0-branes, de-

scribed by the k×k matrix X in eq. (17). It consists of a (0, 1)-form superfield

A = AI(Z
†, Z,ψ†,ψ)dZI

subject to the homogeneity constraint

�
D,AI

�
= 0

Given an element h(Z†, Z,ψ†,ψ) with coefficients in the Lie algebra u(nc), a gauge

transformation on AI is given by

A → e−h∗A ∗ eh + e−h∗ ∂eh.

Here ∂ is the Dolbeault operator on fuzzy
4|4
, which acts by commutation with the

holomorphic coordinates.

The fuzzy holomorphic Chern-Simons action can be concisely written as

S(A ) = Tr
D≤N

�
�αβγδFαβFγδ

�

with

Fαβ =
�
Dα, Dβ

�
, Dα =

1
�Zα −Aα
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around the south pole of the S4. In this limit the abelian flux gets diluted, and we expect
to make contact with the ADHM construction of SU(n) instantons. This check is performed

in section 5.

4.2 The Matrix Model

Let us write the matrix model action. It consists of two terms. The first term is the non-
commutative holomorphic Chern-Simons action and the second term is the defect action

SMM = ShCS(A) + Sdefect(Q, Q̃,A). (4.1)

ShCS(A) = Tr
(
ΩαβγD

αDβDγ
)

ψ4
(4.2)

Sdefect(Q, Q̃,A) = Tr
(
IIJQ̃DIQZJ

)
(4.3)

where Ωαβγ is a three index anti-symmetric tensor which is the non-commutative analogue

of the holomorphic three-form. Here the symbol Tr is the trace over the Hilbert space
H

CP3|4(N) tensored with the u(Nc) color space. We give the precise definition of each ma-
trix variable in the following subsections. Roughly, each symbol defines a linear operator

that acts on H
CP3|4(N) ⊗ u(Nc). The Dα = Zα + Aα are non-commutative versions of

anti-holomorphic covariant derivatives and DI is an extension of this derivative to super-

space. The Q and Q̃’s are the defect modes, and ZI = (Zα,ψi) are the non-commutative
supertwistor coordinates. Finally, IIJ is the supersymmetric infinity bi-twistor (2.16), and

the subscript
(
...
)
ψ4 indicates the projection onto the top superfield component.

All matrix variables in the action (4.1)-(4.3) have direct geometric meaning as functions
and sections of bundles over twistor space. Functions correspond to maps from H

CP3|4(N)
to H

CP3|4(N). A convenient representation of such maps is in terms of a power series in the

oscillators, which we may normal order as M = Mmn|ab (Z†)m(ψ†)aZnψb. Matrix multipli-
cation then corresponds to multiplying successive normal ordered power series. Similarly,

we can describe sections of degree l line bundles by rectangular matrices. These correspond
to maps from H

CP3|4(N + p) to H
CP3|4(N + q), where the net degree is l = q − p. The

corresponding map has degree N + p in the Z oscillators, and N + q in the Z† oscillators.
Hence, it can be identified in the commutative geometry with the corresponding section of
O(l). Note, however, that there is some freedom in how to assign p and q to a degree l

line bundle. This is because complex conjugation and dualization of a bundle are naturally
related by Hermitian conjugation of operators. Finally, integration of a product of such

functions or sections proceeds by tracing over the appropriate Hilbert space [28].

In the matrix action, the covariant derivatives Dα and DI are (0,1) forms on CP
3|4 and
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Why do the 1/N corrections

give rise to 4D Einstein gravity?

* Gauge/gravity correspondence

* Twistor string theory contains conformal gravity

* Penrose’s `non-linear graviton’

* Gravity MHV amplitudes

Hints:

* Jacobson’s argument
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